Current Reactor Technology and Advanced Technology Development

Sama BILBAO Y LEON S.Bilbao@iaea.org

Hadid SUBKI M.Subki@iaea.org

Nuclear Power Technology Development Section
Division of Nuclear Power
IAEA

Joint IAEA/ICTP School of Nuclear Energy Management ICTP, Trieste, November 11, 2010

Contents

- Basics of Nuclear Power
- Evolution of Nuclear Technology
- Water Cooled Reactors
- Small and Medium Size Reactors
- Gas Cooled Reactors
- Fast Reactors
- Generation IV Reactors
- Non-electrical Applications

The Basic Power Plant

Typical Nuclear Power Plant

Nuclear Fission

Typical Reactor Core

Reactor Core / Reactor Vessel

Nuclear has high energy density

17,000 cubic feet of natural gas

Reactors Currently in Operation

Number of Reactors in Operation Worldwide

Source: PRIS, IAEA, 11/02/2010

Types of Nuclear Reactors

- Water Cooled Reactors
 - Light Water Cooled (BWR, PWR)
 - Heavy Water (PHWR, CANDU type)
- Gas Cooled Reactors
 - CO₂ (GCR)
 - Helium (HTGR)
- Liquid Metal Cooled Reactors
 - Sodium
 - Lead or Lead-Bismuth

Pressurized Water Reactor (PWR)

Boiling Water Reactor (BWR)

Pressurized Heavy Water Reactor (PHWR)

- 1. Nuclear Fuel Rod
- 2. Calandria
- 3. Control Rods
- 4. Pressurizer
- 5. Steam Generator
- 6. Light Water

 Condensate

 pump
- 7. Heavy Water Pump
- 8. Nuclear Fuel Loading Machine
- 9. Heavy Water Moderator
- 10. Pressure Tubes
- 11. Steam
- 12. Water Condensate
- 13. Containment

Gas Cooled Reactor

LWGR Type Reactor

LWGR = Light Water cooled Graphite moderated Reactor

NPP in Operation by Age

Number of Operating Reactors by Age

NPPs Under Construction

Number of Reactors under Construction Worldwide

Source: PRIS, IAEA, 11/02/2010

Advanced Reactor Designs

(defined in IAEA-TECDOC-936)

- Evolutionary Designs achieve improvements over existing designs through small to moderate modifications
- Innovative Designs incorporate radical conceptual changes and may require a prototype or demonstration plant before commercialization

Departure from Existing Designs

Another classification...

Evolutionary = Generation III & III+

Current NPP ————— Generation II

- Advanced NPP
 - Evolutionary NPP ———— Generation III

 Generation III+

Innovative NPP ————— Generation IV

Challenges in Nuclear Technology Deployment

- Economic competitiveness
- Countries' National nuclear energy strategy
- Nuclear industry infrastructure
- Effective regulation and licensing process
- Financing schemes and business cases
- Spent fuel and waste management
- Proliferation resistance and physical protection
- Public acceptance

Global Trends in Advanced Reactor Design

Cost Reduction

- Standardization and series construction
- Improving construction methods to shorten schedule
- Modularization and factory fabrication
- Design features for longer lifetime
- Fuel cycle optimization
- Economy of scale → larger reactors
- Affordability → SMRs

Performance Improvement

- Establishment of user design requirements
- Development of highly reliable components and systems, including "smart" components
- Improving the technology base for reducing over-design
- Further development of PSA methods and databases
- Development of passive safety systems
- Improved corrosion resistant materials
- Development of Digital Instrumentation and Control
- Development of computer based techniques
- Development of systems with higher thermal efficiency and expanded applications (Non-electrical applications)

IAEA Publications on Advanced Reactors

http://aris.iaea.org/

Boiling Water Reactors (BWR)

Advanced Boiling Water Reactor (ABWR)

- Originally by GE, then Hitachi & Toshiba
- Developed in response to URD
- First Gen III reactor to operate commercially
- Licensed in USA, Japan & Taiwan, China
- 1380 MWe 1500 MWe
- Shorter construction time
- Standardized series
 - 4 in operation
 (Kashiwazaki-Kariwa -6 &
 7, Hamaoka-5 and Shika2)
 - 7 planned in Japan
 - 2 under construction in Taiwan, China
 - Proposed for South Texas Project (USA)

ABWR-II

- Early 1990s TEPCO & 5 other utilities, GE, Hitachi and Toshiba began development
- 1700 MWe
- Goals
 - 30% capital cost reduction
 - reduced construction time
 - 20% power generation cost reduction
 - increased safety
 - increased flexibility for future fuel cycles
- Goal to Commercialize latter 2010s

ESBWR

- Developed by GE
- Development began in 1993 to improve economics of SBWR
- 4500 MWt (~ 1550 MWe)
- In Design Certification review by the U.S.NRC – approved 10/2010
- Meets safety goals 100 times more stringent than current
- 72 hours passive capability
- Key Developments
 - NC for normal operation
 - Passive safety systems
 - Isolation condenser for decay heat removal
 - Gravity driven cooling with automatic depressurization for emergency core cooling
 - Passive containment cooling to limit containment pressure in LOCA
 - New systems verified by tests

KERENA = SWR-1000

- AREVA & E.On
- Reviewed by EUR
- 1250+ MWe
- Uses internal re-circulation pumps
- Active & passive safety systems
- Offered for Finland-5
- Gundremingen reference plant
- New systems verified by test (e.g. FZ Jülich test of isolation condenser)

Westinghouse

Advanced Pressurized Water Reactor (APWR)

- Mitsubishi Heavy Industries & Japanese utilities
- 2x1540 MWe APWRs planned by JAPC at Tsuruga-3 & -4 and 1x1590 MWe APWR planned by Kyushu EPC at Sendai-3
 - Advanced neutron reflector (SS rings) improves fuel utilization and reduces vessel fluence
- 1700 MWe "US APWR" in Design Certification by the U.S.NRC
 - Evolutionary, 4-loop, design relying on a combination of active and passive safety systems (advanced Accumulator)
 - Full MOX cores
 - 39% thermal efficiency
 - Selected by TXU for Comanche Peak 3 and 4
- 1700 MWe "EU-APWR" to be evaluated by EUR

EPR

WWER-1000 / 1200 (AEP)

- The state-owned AtomEnergoProm (AEP), and its affiliates (including AtomStroyExport (ASE) et.al) is responsible for nuclear industry activities, including NPP construction
- Advanced designs based on experience of 23 operating WWER-440s & 27 operating WWER-1000 units
- Present WWER-1000 construction projects
 - Kudankulam, India (2 units)
 - Belene, Bulgaria (2 units)
 - Bushehr, Iran (1 unit)
- WWER-1200 design for future bids of large size reactors

- Tianwan
 - first NPP with corium catcher
 - Commercial operation: Unit-1: 5.2007; Unit-2: 8.2007
- Kudankulam-1 & 2
 - Commercial operation expected in 2010
 - Core catcher and passive SG secondary side heat removal to atmosphere

WWER-1200

Commissioning of 17 new WWER-1200s in Russia expected by 2020

- Novovoronezh 2 units
- Leningrad 4 units
- Volgodon 2 units
- Kursk 4 units
- Smolensk 4 units
- Kola 1 unit

- Uses combination of active and passive safety systems
- One design option includes core catcher; passive containment heat removal & passive SG secondary side heat removal
- 24 month core refuelling cycle
- 60 yr lifetime
- 92% load factor

APR-1400

- Developed in Rep. of Korea (KHNP and Korean Industry)
- 1992 development started
- Based on CE's System 80+ design (NRC certified)
- 1400 MWe for economies of scale
- Incorporates experience from the 1000 MWe Korean Standard Plants
- Relies primarily on well proven active safety systems
- First units will be Shin-Kori 3,4
 - completion 2013-14
- Design Certified by Korean Regulatory Agency in 2002
- 4 units to be built in UAE

AP-600 and AP-1000

ATMEA1

- 1100 MWe, 3 loop plant
- Combines AREVA & Mitsubishi PWR technologies
- Relies on active safety systems & includes core catcher
- Design targets:
 - 60 yr life
 - 92% availability
 - 12 to 24 month cycle;0-100% MOX

Chinese advanced PWRs CPR (CGNPC) and CNP (CNNC)

CPR-1000

- Evolutionary design based on French 900 MWe PWR technology
- Reference plant: Lingau-1&2 (NSSS Supplier: Framatome; commercial operation in 2002)
- Lingau-3&4 are under construction (with > 70% localization of technology; NSSS Supplier: Dongang Electric Corporation);
- Now a Standardized design
- Hongyanhe 1,2,3,4; Ningde 1; Yangjiang 1,2; Fuquing 1,2; Fanjiashan 1&2 under construction; more units planned: Ningde 2,3,4 and Yangjiang 3,4,5,6

CNP-650

Upgrade of indigenous 600 MWe PWRs at Qinshan (2 operating & 2 under construction)

Heavy Water Reactors (HWR)

ACR-700 & ACR-1000

- » AECL
- » 740 MWe Enhanced CANDU-6
- » 1000 MWe Advanced CANDU reactor
- » 284 / 520 horizontal channels
- » Low enriched uranium– 2.1%,
- » 60 yr design life
- » Continuous refueling
- » Combination of active and passive safety systems
- » CNSC has started "pre-project" design review
- » Energy Alberta has filed an Application for a License to Prepare Site with the CNSC -- for siting up to two twin-unit ACR-1000s --- commissioning by ~2017
- » 30 CANDU operating in the world
 - 18 Canada (+2 refurbishing, +5 decommissioned)
 - 4 South Korea
 - 2 China
 - 2 India (+13 Indian-HWR in use, +3 Indian-HWR under construction)
 - 1 Argentina
 - 2 Romania (+3 under construction)
 - 1 Pakistan

India's HWR

- 540 MWe PHWR [evolution from current 220 MWe HWRs]
 - » Nuclear Power Corporation of India, Ltd.
 - » First units: Tarapur-3 & -4 connected to grid (2005 & 6)
- 700 MWe PHWR [further evolution economy of scale]
 - » NPCIL
 - » Regulatory review in progress
 - » Use of Passive Decay Heat Removal System; reduced CDF from PSA insights
 - » Better hydrogen management during postulated core damage scenario
 - » First units planned at Kakrapar & Rawatbhata

- » BARC
- » for conversion of Th232 or U238 (addressing sustainability goals)
- » vertical pressure tube design with natural circulation

IRIS (International Reactor Innovative and Secure)

- Westinghouse
- 100-335 MWe
- Integral design
- Design and testing Involves 19 organizations (10 countries)
- Pre-application review submitted to the USNRC in 2002
- To support Design Certification, large scale (~6 MW) integral tests are planned at SPES-3 (Piacenza, IT)
 - Construction start late 2009
- Westinghouse anticipates Final Design Approval (~2013)

SMART

- Korea Atomic Energy Research Institute
- 330 MWe
- Used for electric and non-electric applications
- Integral reactor
- Passive Safety

CAREM (Central Argentina de Elementos Modulares)

- Developed by INVAP and Argentine CNEA
- Prototype: 25 MWe
- Expandable to 300 MWe
- Integral reactor
- Passive safety
- Used for electric and nonelectric applications
- Nuclear Safety Assessment under development
- Prototype planned for 2012 in Argentina's Formosa province

NuScale

- Oregon State University (USA)
- 45 MWe
- 90% Capacity Factor
- Integral reactor
- Modular, scalable
- Passive safety
- Online refueling
- To file for Design Certification with US NRC in 2010.

B&W mPower

- Integral reactor
- Scalable, modular
- 125 750 MWe
- 5% enriched fuel
- 5 year refueling cycle
- Passive safety
- Lifetime capacity of spent fuel pool

Floating Reactors

- Provide electricity, process heat and desalination in remote locations
- KLT-40S (150 MWt → 35 MWe)
- VBER-150 (350 MWt → 110 MWe)
- VBER-300 (325 MWe)

Construction of pilot plant (2 units) started April 2007

4S (Super Safe, Small and Simple)

- Toshiba & CRIEPI of Japan
- 50 MWe
- Sodium Cooled Fast Reactor
- 10 30 year refueling period
- Submitted for US NRC Pre Application Review
- Proposed for Galena, Alaska

PBMR (Pebble Bed Modular Reactor)

- ESKOM, South
 Africa Government,
 Westinghouse
- Helium Gas Cooled
- 165 MWe
- Electrical and nonelectrical applications

GAS-COOLED REACTOR DEVELOPMENT

- More than 1400 reactor-years experience
- CO₂ cooled
 - 22 reactors generate most of the UK's nuclear electricity
 - also operated in France, Japan, Italy and Spain
- Helium cooled
 - operated in UK (1), Germany (2) and the USA (2)
 - current test reactors:
 - 30 MW(th) HTTR (JAERI, Japan)
 - 10 MW(th) HTR-10 (Tsinghua University, China)
- In South Africa a small 165 MWe prototype plant is planned
- Russia, in cooperation with the U.S., is designing a plant for weapons Pu consumption and electricity production
- France, Japan, China, South Africa, Russia and the U.S. have technology development programmes

Fast Reactor Development

• France:

- Conducting tests of transmutation of long lived waste & use of Pu fuels at Phénix (shutdown planned for 2009)
- Designing 300-600 MWe Advanced LMR Prototype "ASTRID" for commissioning in 2020
- Performing R&D on GCFR

Japan:

- MONJU restart planned for 2009
- Operating JOYO experimental LMR (Shutdown for repair)
- Conducting development studies for future commercial FR Systems

India:

- Operating FBTR
- Constructing 500 MWe Prototype Fast Breeder Reactor (commissioning 2010)

Russia:

- Operating BN-600
- Constructing BN-800
- Developing other Na, Pb, and Pb-Bi cooled systems

China:

- Constructing 25 MWe CEFR criticality planned in 2009
- Rep. of Korea:
 - Conceptual design of 600 MWe Kalimer is complete

United States

- Under GNEP, planning development of industry-led prototype facilities:
 - Advanced Burner Reactor
 - LWR spent fuel processing

Generation IV Reactor Designs

- Several design concepts are under development to meet goals of
 - Economics
 - Sustainability
 - Safety and reliability
 - Proliferation resistance and physical protection
- All concepts (except VHTR) are based on closed fuel cycle
- Concepts include small, modular approaches
- Most concepts include electrical and non-electrical applications
- Significant R&D efforts are still required
- International cooperation needed for pooling of resources

Generation IV Reactor Designs

- Gas Cooled Fast Reactors (GFR)
- Very High Temperature Reactor (VHTR)
- Super-Critical Water Cooled Reactor (SCWR)
- Sodium Cooled Fast Reactor (SFR)
- Lead-Cooled Fast Reactor (LFR)
- Molten Salt Reactor (MSR)

Gas Cooled Fast Reactor

Reactor parameter	Reference Value	
Coolant	Helium	
Spectrum	Fast	
Reactor power	600 MWth	
Net plant efficiency (Brayton cycle)	48%	
Coolant inlet/outlet temperature and pressure	490°C/850°C at 90 bar	
Average power density	100 MWth/m ³	
Reference fuel compound	UPuC/SiC with about 20% Pu content	
Fuel cycle	Closed	
Conversion ratio	Self-sufficient	
Burn up	5% FIMA	

Lead Cooled Fast Reactor

Molten Salt Reactor

Reactor parameter	Reference Value	
Coolant	Molten Salt	
Spectrum	Thermal	
Reactor power	1000 MWe	
Net plant efficiency	44 to 50 %	
Coolant inlet/outlet temperature and pressure	565 - 750°C (850°C for hydrogen production)	
Fuel	Uranium/Plutonium Fluoride	
Fuel cycle	Closed	
Power Density	22MWth/m ³	
Moderator	Graphite	

Sodium cooled Fast Reactor

Reactor parameter	Reference Value	
Coolant	Sodium	
Spectrum	Fast	
Reactor power	1000-5000 MWth	
Design	Pool type	
Coolant outlet temperature and pressure	530-550°C, 1 bar	
Fuel	Oxide or metal alloy	
Fuel cycle	Closed	
Average Burn-up	About 150-200 GWD/MTHM	
Conversion ratio	0.5-1.30	
Average Power Density	350 MWth/m ³	

Super-Critical Water Cooled Reactor

Very High Temperature Reactor

Coolant

Hydrogen Production Plant Reactor parameter

Heat Exchanger Reference Value

Helium

The potential for non-electric applications of nuclear energy is large

Energy consumption by application

Advanced Applications of Nuclear Energy

- Sea-water desalination
- District heating
- Heat for industrial processes
- Hydrogen production
 - At "fuelling stations" by water electrolysis
 - At central nuclear stations by
 - high temperature electrolysis
 - thermo-chemical processes
 - hybrid processes
- Coal gasification
- Enhanced oil recovery (e.g. from oil shale and tar sands)
- Electricity for Plug-in Hybrid Vehicles

Nuclear Plants Can Provide the Heat Required for Many Processes

Non-Electrical Applications

- Today 441 NPPs in operation worldwide
- 30 are being used for cogeneration (about 5 GW(th))
- About 700 reactor-years of experience

Characteristics of the heat market

District heating

- seasonal fluctuation in demand
- unlikely to be in base-load operation
- limited distribution line, typically about 20-30 km
- low grade steam/hot water

Industrial process heat

- high, medium and low temperature
- likely to be base-load, little seasonal change
- high reliability as a source
- could be away from population center
- short distribution line

Desalination

Fully developed to a largescale commercial process providing 38 Million m³/d of fresh water in 120 countries

Distillation

Multi-stage flash (MSF)
Multi effect (MED)
Vapor compression (TVC)

Membrane separation Reverse osmosis (RO)

Reactor Types and Desalination Processes

Reactor type	Location	Capacities (cu.m./d)	Status
LMFR	Kazakhstan (Aktau)	80,000	in service till 1999
PWRs	Japan (Ohi, Takahama, Ikata, Genkai) Rep. of Korea Argentina Russia	1,000 – 2,000 40,000 12,000	in service with operating experience of over 125 reactor-years under design under design (floating unit)
BWR	Japan (Kashiwazaki)		never in service following testing in 1980s, due to alternative freshwater sources; dismantled in 1999
PHWR	India (Kalpakkam) Canada Pakistan (KANUPP)	6,300 4,800	under commissioning under design under design
NHR	China		under design
HTGR	South Africa, France, The Netherlands		under consideration

Hydrogen production using nuclear power

- High Temperature Electrolysis (up to ~ 1000°C).
- Sulfur-based thermo-chemical cycles for water splitting:
 - Using Sulfur- Iodine cycle (needs about 900°C)
 - Hybrid Sulfur cycle (i.e. Electrolysis and Thermo-Ch)
 - Lower temperature processes are under consideration
- Steam reforming of methane (600-800°C)

Hydrogen Production Systems

Steam Reforming Process

ENERGY FOR TRANSPORTATION

- Transportation
 - 15 20% of the world's energy consumption
 - fastest growing energy sector
- If nuclear would power part of this sector, it could significantly impact global environmental sustainability
- Two examples:
 - Electricity
 - for plug-in hybrid electric vehicles (very near term)
 - For electric transportation systems (Trains; subways,...)
 - Hydrogen fuelled vehicles

Conclusions

- There are many designs to choose from
 - Not all are commercially available today
 - All have advantages and disadvantages
- Many of them have been:
 - Endorsed by User Requirements (EUR, URD, etc)
 - Certified by licensing authorities in several countries
 - Built and operated for many years in various countries... or
 - ... In the process of being built

Conclusions

- Considerations when choosing a design
 - Balance between technology maturity and innovation
 - Balance between constructability and operability
 - Advantages of "Owner Groups"
 - Operating Experience
 - Market for spare parts
 - Assurance of supplier support
 - Development of national capabilities
 - Electrical and non-electrical applications

